BAr

AD-A214 471

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

THE REAL-TIME ROLL-BACK AND RECOVERY OF
TRANSACTIONS IN DATABASE SYSTEMS

by
David E. Quantock

June 1986

Thesis Advisor: David K. Hsiao

Aprroved for Public Release; Distribution is Unlimited

DTIC

ELECTE geg
NOV 22 1389

@
B

5 0
ALV 4

B
-8

Qb
©
fou
-
L&
4

()
J

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY (LASSH(ATON to RESTRICTIVE MARKINGS
UNCLASSIFIED
23 SECURITY CLASSFICATION AL THORTY 3 ODISTRIBUTION . AVAILABILITY OF REPORT
Approved for Public Release;
2b DECLASSIHICATION DO NGRAD.NG SCHEDULE Distribution is Unlimited
a PERFORMING ORGAN.ZATION RIFORT NUMBER(S, 5 MONITORING ORGANIZATION REPORT NUMBER!(S;
6a NAME OF PERFORMING ORGANIZATION 60 OFFICE SYMBO. 7a NAME OF MONITORING ORGANIZATION
(if apphcable)
Naval Postgraduate School Code 52 Naval Postgraduate School
6¢ ACDRESS (City. State, and 2iP Cooe) 70 ADDRESS (Crty, State, and 2IP Code)
Monterey, California 93943-5000 Monterey, California 93943-5000
8a NAME OF FUNDING : SPONSORING 8o OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUNVBER
ORGANIZATION (If applicable)
8¢ ADDRESS (City. State, ang Z2.F Coge! 1N SOURCE OF FUNDING oV EIRY
PROGRAN PROJECT YASK A0RY UNIT
ELEMENT NO NO NO “CCESSION NO

11 Ttk (include Security Ciassification

THE REAL-TIME ROLL-BACK AND RECOVERY OF TRANSACTIONS IN DATABASE SYSTEMS

12 PERSONA. A_ =050
Quantock, David E.

132 TYRE OF F{STET StoToUE LLLEeen i DATE OF FEPOPY (year Month Day. ['5 EAGE COUN®
Master's Thesis e IR 1989, June

TEOSUFTLENENTRT TTAT L

B Sl T e SLERDT TER Y ({ontinue ONn reverse it necessary and 10entity Dy DGy NUMDE?)
£.n 1 ocio i - oozt Roll-back and Recovery, Multilingual Database System,

Multibackend Database System, lncremental Logging,

Differential Files, Shadow Paging, Backend Transaction Lcg.

Cy AERSTRLCT t(ortinue CroreLerse ! necEsidr, and igentity b, b0tk Nnumper)

A modern database transaction may involve a long series of updates, deletions, and insertions
of data and a complex mix of these primary database operations. Due to its length and
complexity, the transaction requires back-up and recovery procedures. The back-up procedure
allows the user to either commit or abort a lengthy and complex transaction without
compromising the integrity of the data. The recovery procedure allows the system to maintain
the data integrity during the execution of a transaction, should the transaction be
interrupted by the svstem.

With both the back~up and recoverv procedures, the modern database system will be able to
prov1de consistent data throughout the life-span of a database without ever corrupting elther
its data values or its data tyvpes.

However, the 1wp1ementatlo“ o‘ back-u; and recoveryv procedures in a da:abasc System is

SOUTE RO, AL e - - CRERTELTT ST R Ty LT AT
’;T;, oLt T e '.__ A o iw Unclass;fleo
R AN .o Sl HNGiuge Lred L DO L Lt o BN e
Prof, Davigc K Feizo Lgﬂﬁ)_jgﬁp““sﬁ Code S2EC
DD FORN 1475 - . R Teete e ertale G il o
e e e ae e et — - ;.»---.}--'._..-;'.‘;N "
i UNCLASSTFIE.

|

SECURITY CLASSIPICATION OF THIS PAGE

#19 - ABSTRACT - (CONTINUED)

a difficult and involved effort since it effects the base as well as meta
data of the database. Further, it effects the state of the database system.
This thesis is mainly focused on the design trade-offs and issues of imple-
menting an effective and efficient mechanism for back-up and recovery in the
multimodel, multilingual, and multibackend database system.

Accession For ., Y
NTIS CRAXI 4 L }
DTIC TAB 4 P S
Unannounced O ~—_

Justification 4

By
Distributton/ |
Availability Codes
Avail and/or
Dist Special
“/\ .

UNCI.ASSTFIED

ll SECURITY CLASSIFICATION OF Th § PAGE

Approved for public release; distribution is unlimited

The Real-Time Roll-Back and Recovery of Transactions in Database
Systems

by

David E. Quantock
Captain, United States Army
B.A., Norwich University, 1980
M.S., Troy State University, 1983

Submitted in partial fulfiliment of the
requirements for the degree of
MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
June 1989
)

Author:
ayid E. ntock
Approved by: /L(/'“*\?(/ ‘. dfﬁf\/t’ h \
David K. Hsiao, Professor of Computer Science
Thesis Advisor

—ze7 #
Thomas Wu, Agsoefate Professor of Computer Science
econd Reader

Robert McGhee, Chairman
Department of Computer Science

KT M
Kneale T. Marshall .
Dean of Information and Policy Sciences

iid

ABSTRACT

A modemn database transaction may involve a long series of updates,
deletions, and insertions of data and a complex mix of these primary
database operations. Due to its length and complexity, the transaction
requires back-up and recovery procedures. The back-up prccedure allows
the user to either commit or abort a lengthy and complex transaction without
compromising the integrity of the data. The recovery procedure allows the
system to maintain the data integrity during the execution of a transaction,

should the transaction be interrupted by the system.

With both the back-up and recovery procedures, the modern database
system will be able to provide consistent data throughout the life-span of a

database without ever corrupting either its data values or its data types.

However, the implementation of back-up and recovery procedures in a
database system is a difficult and involved effort since it effects the base as
well as meta data of the database. Further, it effects the state of the database
system. This thesis is mainly focused on the design trade-offs and issues of
implementing an effective and efficient mechanism for back-up and

recovery{ip the multimodel, multilingual, and multibackend database system.

!

v

TABLE OF CONTENTS
L. INTRODUCTION 1
A. THE MOTIVATION 1
1. Roll-back and Recovery Issues W2
2. Design Decisions 3
B. THE SYSTEM BACKGROUND 4
1. The Multilingual Database Systemccccccvcrcnscnncssnccnnscnnssnnss S
2. The Multibackend Database Systemccccceeereccncecssaccnnsnsses 9
C. THESIS ORGANIZATION ..ccoivenrcersicsesemssssssassassnsscssssssssnsassns 12
II. ROLL-BACK ALGORITHM OPTICNS .. cessessssnssnntesnsansases 13
A. OVERVIEW OF THE THREE GENERAL ALGORITHMS .13
B. MODELS OF THREE GENERAL ALGORITHMS. 13
1. Incremental Logging ...cciiiivcnicrecncnnsssnnnennnssssnessnsscsanecnns 14
a. Algorithm Descriptioncicciinieccisscssnncsnnissscssesnsssnsssens 14
b. AdVvantages ccccnvecccsnicnsnencsssnncssssscssonnescsssessssassssssancns 16
C. Disadvantagesccccccicerccncssnneinninnsissssnssesssisssssssnssssans 17
2. Differential Filescccvececssnscrssncssncsssenssescnnsnsssnssarcsssssssssses 17
a. Algorithm Descriptionc.cccccerescnincsecseecsnccaisoncssessessansanaes 18
D. AAVANtages .cccvncnnienrsccssnsssssssssssrssssnsssersssssssnsssassosnes 20
C. Disadvantagescceiccercsennsecsaisniccsstessannesesssasssssasssanes 21

v

3. Shadow Paging 21

a. Algorithm Description.. 21

b. Advantages | cesssssssssesssssssnasasssnsssseseanaasssssasassassasane 22

c. Disadvantages 22

C. SUMMARY AND CONCLUSIONS 25

III. IMPLEMENTATION ISSUES 29

A. IMPLEMENTATION CONSIDERATIONS .. . 29

1. Problem Specification . teeemarerssssrsssasesssssns 29

2. Modifications to the Differential Logccccceeeeecnessecccearersnsene 29

3. Placement and Description of the Logcccccrnrveccnnsancecacsvacs 31

B. THE CENTRALIZED APPROACHccouvueurnrenseresiccrncans 31

1. User INterfaceccuiicscccresecssncsnnssansensancsasssonsssessnasasssesssasaes 33

2. General AIZOTithImcicciiiinncccsnisscncissnnssssnnssssscsssnsesasenssssens 35

3. Advantages cersessesssessesessenrartansansastsesesssanassseane 38

4. Disadvantagesccccncnseiciniiiencessnnissstisssssssssssssssassssssess 38

C. THE DECENTRALIZED APPROACHcuvevecrrnncrccnnenes 38

1. User INterface ...ciccnnccnsncsnnnscassnrcsnssnsssssansarsssssssssessassassasee 39

2. General Algorithmcccccninininiiinncccccsssnniecsssssesssssssesacssasns 41

3. AdVANLAZES .cciirrreeercisneesssenntssssssissssasnnesssssnssssseensasssnntasssssessaane 44

4. Disadvantages ...ccciecinensiicnniieniiisssnasisssstsssssssssesssns 45

D. SUMMARY AND CONCLUSIONSccociiivinninseesnssssscsasnencensas 45
©ovi

IV. THE BACKEND TRANSACTION LOG (BTL) 48
1. The Data Structure 48
2. Decomposition View of the Algorithm S 50
3. The Algorithm PP X,
4. Summary - . 62
V. CONCLUSIONS . cerersennens6d
APPENDIX ... ceessstsssassatnsansassssarsssessstsassssssssessases 68
LIST OF REFERENCES .82
BIBLIOGRAPHY . sesssesestestessarsasssssatsatsssnsstnsteseststansassnsrasasasanes 84
INITIAL DISTRIBUTION LIST ...ccconiciisnsncsnicnssasseessrsasencssssasssessssassans 85
vii

[a—y
.

S I AN S

b ek ek et e ek ek ek e
® N o A W N = O

LIST OF FIGURES

The Multilingual Database System (MLDS)c..cccoceeeneerrenrenrvenneennen 6
Multiple Language Interfaces for the Same KDScccccceevnnnnne 8
The MBDS Process StIUCLUTEccceerercenerceenrersaessessessesesnseennens 11
Incremental Logging on MBDS Hardware Organization 15
Differential File on MBDS Hardware Organization 19
Shadow and Current Page Tablescccceeveeerevcvverreereierieeeennne 24
Backend Transaction LOgccocuvvvevererereereeenierrcnrcresneneeeeeeaeesnens 32
Centralized BTL User Interfaceccoceevevveevierveeeneeseeseeeceeseeene e 34
Centralized Backend Transaction Log (BTL)ccccceevvevevireiennennnne. 36
Decentralized BTL User Interfaceccccoeevvvvveveseneecenrierrenee. 40
Decentralized Backend Transaction Log (BTL)cccccovveveecenrinnnnen. 42
The Data Structure of the Backend Transaction Log 49
A Decomposition DIiagramc.ccceeveveeveeceevinneeeeceeiecreeee e 51
SEARCH_FOR_PTRARRAY ...ttt 54
The BTL Initializationccccecerimmeniiiccieiecceneniee v 56
Sending RETRIEVEs to Directory Managementcccoovu......... 57
Update the RETRIEVE_REQUESTcccoovvieiininnnireieneece, 60
Transaction Inserted into the Databaseccccocuvevevereeeceesreniecnnnennen. 61

viii

L. INTRODUCTION

A. THE MOTIVATION

Roll-back and recovery is the return of a database system to its previous
state after a user error, application error, partial system failure, or supervisor
request. Not only must the system return to a previous state, but the
database must return to a consistent and correct state. In order to return to a
consistent state, the Database Management System (DBMS) must be able to
keep track of ongoing transactions and abort and roll-back uncommitted
transactions if the system is interrupted.

Roll-back and recovery is a very important component of a database
system. Even with its great importance, few articles have been written on
this subject as compared to articles on data models, schema design, query
languages, access paths, and locking and concurrency contiol. It would
seem that the main reason for this is that system errors are negligible when
compared to the total throughput of a computer system. But although there
are few system errors, the overhead incurred by a roll-back and recovery
algorithm can have a major impact on the system’s overall performance. In
addition, the inconsistent and incorrectness of the database and states of

DBMS due to the lack of roll-back and recovery may be incalculable.

1. Roll-back and Réco&ery Issues

Over the past decade the area of roll-back and recovery has matured
as database systems have become increasingly complex. In a single-user
system), transactions are put into the system and committed in a seral
fashion. If there is a system failure, the user will have to reenter the last
transaction if it had not been committed. There is no single-user system
available that could give the user the ability for supervisor roll-back. By
supervisor roll-back we meant that the supervisor could put in a test
transaction and see the results and then undo the results of the transaction if
desired.

Now in the era of distributed computer databases, you have databases
distributed over a network with multiple users trying to access the data. This
requires a much more complex DBMS to handle the many user transactions
and then roll-back to a consistent database in the event of a system interrupt.

Articles written on roll-back and recovery all seem to concentrate on
roll-back after a system failure [Refs. 1,2,3,4,5,6,7,8,9,10,11]. In 1981 a
study was done by IBM on the performance of their first relational database
system, System R [Ref. 3:p. 226]. One of their findings was that 97% of all
transactions execute successfully. In the remaining 3% of the transactions,
almost all result from incorrect user input. Less than 1% of the transactions

are aborted because of system failure (i.e., system overload or deadlock). It

was these findings that generated the feeling that roll-back and recovery
may have other applicat’ >ns other than recovery from system error.

A very powerful extension of roll-back and recovery would be the
ability to insert a transaction, allow the supervisor to see the results of that
transaction, and then if he/she liked the results, have the transaction
committed to the database. If the results were unsatisfactory to the
supervisor, then the supervisor could invoke what we call a supervisor roll-
back. Supervisor roll-back would restore the system to its previous
database state. This would allow the supervisor to do a number of tests
without committing the database to the transactions. This would be an
extremely valuable management tool for testing proposed changes to a

database.

2. Design Decisions

In designing a roll-back and recovery algorithm there is a number key
factors that must be taken into consideration. First, it incurs modest storage
overhead for the duplicated data that is brought into the main memory. For
example, a system that duplicates the entire database for each transaction
will quickly run out of storage. Second. the type of data structure that stores
the data should hold only the data it needs and should dynamically grow and
shrink to fit the system needs. Third, the cost of the storage overhead versus
the number of rollbacks required. A system that seldom has a need to roll-

back should have a different algorithm then a system that frequently rolls-

back. Fourth, it should permit parallelism to the maximum extent possible
to satisfy system performance requirements. A system could always
guarantee a consistent view bf the database and fast recovery if it serially
executed each transaction. But the costs of serial execution negate any
performance benefit of a concurrent system. Additionally, the level of
granularity must be to the level that offers maximum concurrency. For
example, the granularity of page logging is generally more costly than entry
logging. The reason for this is simply that in page logging the entire contents
of the page is logged as opposed to entry logging where only the specific
record or modified record is logged. The cost is in terms of increased storage
requirements and execution time. Furthermore, page logging implies page
locking which impedes concurrency. [Ref. 7:p. 556] Fifth, it should
perform satisfactorily in a network environment that has some measure of
communication delay. Sixth, the overhead during normal performance
should not be degraded by the roll-back and recovery mechanism. Seventh,
recovery speed during roll-back should not cause major delays to the users.
Eighth, sofrware complexity of the recovery mechanism needs to be as
simple as possible to prevent system delays. And finally, the recovery

system must be reliable.

B. THE SYSTEM BACKGROUND
The vehicle for studying this roll-back and recovery algorithm is the
multilingual database system (MLDS) developed at the Naval Postgraduate

- 4

f

transaction processing.

1. The Multilingual Database System

School and Ohio State University [Ref. 12,13,14,15]. In this section, we
give the reader some background material on the system structure and
functions. This will also include an introduction into the architecture of the

multibackend database system (MBDS) used to support MLDS database

The multilingual database system is depicted in Figure 1.

figure, a query, which is written in the user’s data language (UDL) (e.g.,

SQL), is sent into the system and is based on the user’s data model

(UDM)(e.g., the relational data model). The user’s transaction is processed

through the language interface layer (LIL) which routes the transaction to

the kernel mapping system (KMS). KMS performs two functions. If the

user is creating a new database, then the first function for KMS is to

transform the database in UDM into an equivalent database in the kernel

data model (KDM). In other words, a schema is made up for the

transformation of the database in the user model into one in the system’s

model. KMS then sends the new schema to the kernel controller subsystem

(KCS) which in turn sends the KDM-database definition to the kernel

database system (KDS). After KDS has received the new KDM-based

schema, it notifies KCS who notifies the user that the database may now be

loaded.

KMS

LiL KC [4—¥| KDS

KFS /

KDL
UDM :User Data Model Data Language
uDL :User Data Language
LiL :Language Interface Layer
KMS :Kernel Mapping System
KC :Kernel Controller O Data Model
KFS :Kernel Formatting System
KDM :Kernel Data Model
KDL :Kernel Data Language System Module
KDS :Kernel Database™ System

—_— Information Flow

Figure 1. The MultiLingual Database System (MLDS)

After the schema of the database has been laid out, the second task of
KMS is to handle transactions from the user. When a user sends in his
query, the UDL (e.g., SQL query), KMS translates the query into the an
equivalent KDL version. KMS then sends the KDL transaction to KDS for
execution. KDS retrieves or executes the transaction and then sends the
results back to KCS in the KDM form. KCS then forwards these results
back to the kernel formatting system (KFS) which transforms the results
from the format in KDM to the UDM. Once the transformation has
completed, KFS sends the results to the user through LIL.

The LIL, KMS, KCS, and KFS components are referred to as the
language interface. For each user-defined language(model), there must be
an interface that takes the user’s query(database) and translates(transforms)
it into the kernel language(model-based) query(database). For example,
there exists a set of language interfaces - one for the relational database/SQL
language, another for the hierarchical database/DL/1 language, a third for the
network database/CODASYL-DML language and a fourth for the functional
database/Daplex language as depicted in Figure 2. All of these interfaces
are supported on a single KDS which accesses, stores, and retrieves the data
form the databases.

KDM and KDL of the MBDS are the attribute-based data model
(ABDM) and the attribute-based data language (ABDL), respectively.
ABDL supports the five primary database operations, INSERT, DELETE,

KDs

KDM

UDM KMS
LiL KC
yamN
UDM KMS
LiL KC
LoD
UbDM KMS
N LIL KC
N
uom KMS
LiL KC
uDL
KFS
Figure 2. Multiple Language Interfaces for the Same KDS

e

UPDATE, RETRIEVE, and RETRIEVE-COMMON. The first four
operations are obvious. The last operation, RETRIEVE-COMMON, is
equivalent to a relational equijoin which provides the merging of two files
with common attribute values. These five simple database operations are
capable of supporting complex and comprehensive transactions. For a more

detailed discussion of the multibackend database system refer to [Ref. 16].
2. The Multibackend Database System

As each year passes, new systems are developed which increase the
speed and performance of older systems. This is perplexing for the users
who in order to keep up with technology progresses and performance gains,
must continually upgrade their software and hardware. Whiie the
multilingual database system gives the user the flexibility to incorporate
different software interfaces into a system, the concept of the multi-backend
database system (MBDS) gives speed and performance upgrades without the
conventional upgrade costs in hardware,

By using multiple backends configured in a parallel fashion,
performance gains are attained by increasing the number of backends to the
system. MBDS will produce nearly a reciprocal decrease in the response
times for user transactions when the number of backends is increased.
Additionally, if the size of the database increases proportionally with the
number of backends added, there will be little if any degradation in system

performance [Ref. 17].

—

One of the major design goals of MBDS was to develop a system that

maximized the work of the backends and minimize the work of the
controller. In Figure 3, the tdp half of the diagram depicts the controller and
the bottom half the backend. The controller can communicate with 1 or
more backends over a local-area network. The controller has three (3)

primary functions. First, the controller prepares a request for execution by

the backends. This request is performed by the request preparation of the
controller. Secondly, the controller coordinates responses from the
backends. This function is performed by the post processing. And lastly,
the insert information generator (IIG) maintains a status on the current
storage capacity of each backend. When an insert request is generated, IG
sends the insert to a specific backend based on the current status of database
storage. -
The backend also has three but different primary responsibilities:
directory management, concurrency control, and record processing. First,
the directory management receives incoming messages from the controller.
The directory manager determines the addresses of the records required to
process a particular request. Secondly, the concurrency control allows
concurrent accesses to the database by different requests. And lastly, the
record processing section performs data retrieval, storage, and the

processing required on any particular record.

- 10

THE CONTROLLER

REPLY GGREGATE REQUEST
MONITOR og;A | PARSER REQUEST PREPARATION
Fg%}mss ING P TION OMPOSER
 §
CLUSTER ID
GENERATOR | INSERT INFORMATION
GENERATOR
BACKEND DESCRIPTOR 1D
SELECTOR GENERATOR \ 4
e
GET PCL ——1 PUT PCL

A BACKEND

PUT PCL DIRECTORY CLUSTER l4————— GET PCL
MANRGEMENT SEARCH
ADDRESS DESCRIPTOR :
GENERATION SEARCH
RECORD PHYSICAL l
PROCESSING DATA REQUEST NEW
AGGREGATE OPERATION| |______§ coMpLETE | | TRARE'C
OPERATION CONCURRENCY
CONTROL
Figure 3. The MBDS Process Structure

11

For communications over the local-area network, there is a pair of
communications processes in each backend and the controller. These

processes are called get pcl and put pcl.

C. THESIS ORGANIZATION

In this thesis, the three general algorithms for roll-back and recovery
were examined: incremental logging, differential files, and shadow paging.
With each algorithm, there are many variations. In Chapter II, we provide a
description of the general algorithms.

In Chapter III, we introduce a general solution and then present two
additional methods to implement the solution. In Chapter IV, we arrive at
the recommended solution for implementation in MBDS by giving a
description of how the algorithm will work. The actual algorithm, written in
pseudo PASCAL, is in the Arpendix. Finally, in Chapter V, we make our

conclusions abecut ithe proposed design.

12

II. ROLL-BACK ALGORITHM OPTIONS

A. OVERVIEW OF THE THREE GENERAL ALGORITHMS

There are generally three basic algorithms in roll-back and recovery. As
in any area of study there are a number of derivations from these general
solutions. In this Chapter, we describe the three basic algorithms along with
the advantages and disadvantages of each approach.

The first general algorithm is incremental logging. In incremental
logging the technique is to apply the updates directly to the database and
keep an incremental log of all changes to the system state. In the second
general algorithm, differential files, the algorithm calls for a centralized log
which defers all updates until the end of the transaction. And finally,
shadow paging is an alternative to log-based recovery techniques. In
shadow paging, the database is partitioned into pages. During a transaction
a page has a current page table and the shadow page table. All updates are
made to the current page table with the shadow page table as the recovery
source in case the transaction fails. These three methods will be discussed in

much greater detail in the sections that follow.

B. MODELS OF THREE GENERAL ALGORITHMS
It should be noted that a transaction is decomposed into a number of
requests that are executed to perform the transaction. Each request is treated

as an atomic item. As each request of a transaction completes, the

13

transaction remains in a partially committed state until all requests of the

transaction have been completed.

1. Incremental Logging
As stated earlier, the incremental log is a centralized file that logs in
transactions. As the transaction is being logged in, it is also being
instantaneously entered into the database. If the system fails or has to roll-
back, then the system must undo the transaction based on the information in

the incremental log.

a. Algorithm Description

Figure 4 depicts the placement of the incremental log if it were
placed in MBDS. As each transaction enters the controller, the system
would immediately modify the database or retrieve the data (arrow number
1, Figure 4). In addition, if a write is involved, the system annotates in the
incremental log the change to the database (arrow number 2, Figure 4).

Specifically, when a transaction enters the system, a "start” record
is written to the log with the transaction number attached. During the
execution of the transaction, if write operations are encountered they are
entered into the log and simultaneously sent directly to the database for
updating. As a minimum, a record consists of a transaction name, data item
name, old value of the data, and new value of the data. When the transaction
partially commits, a "commit" record is written into the log. As the

transactioncontinues, i.e., the next request is executed, another partially

14

ONE OR MORE DISK
DRIVES PER BACKEND

BACKEND 1

-
O

TO HOST
COMPUTER

BACKEND 2

MODIFY
(WRITE)

INCREMENTAL

LOG
BACKEND n -
BROADCASTING BUS
Figure 4.

Incremental Logging on MBDS Hardware Organization

15

committed state is reached. If the system fails in the middle of a request,
then the request that had not completed is undone and the rest of the
transaction that had partially. committed is first undone and then redone.
The system is able to accomplish the undo and redo by referring to the
incremental log.

Checkpointing can also be used to reduce the overhead of
searching the log and redoing transactions. checkpointing is done for
primarily two reasons. First, the searching process of the incremental log is
time-consuming. Secondly, most of the transactions that need to be redone
have already made changes to the database and do not need to be redone.
With checkpointing, after a failure has occurred, the system only has to
check the log to its last transaction that started executing before the last
checkpoint. That transaction is undone and then redone. For more

information on checkpointing refer to [Refs. 5,18].

b. Advantages
The advantages of incremental logging are two-fold. First, a
system that runs with this method has the fastest processing time of database
operations. Because the database is instantaneously updated with the
logging operations, there is virtually no performance degradation of the
system. And Secondly, the algorithm is straightforward and therefore easy

to implement. This algorithm gambles that there will be very few roll-backs.

c. Disadvantages

Although, incremental logging has the fastest processing time of
the three algorithms, it is also the slowest of the three in roll-back and
recovery. The primary reason for this is that this algorithm directly changes
the database. In the event of a roll-bac!;, the system must go out and change
the database. This requires that ali records updated by the transaction be
deleted from the database and all records in the incremental log be retrieved
and inserted into the database. After these two changes have been made, the
system must then delete the record occurrences from the incremental log.

This requires several disk accesses and is therefore very slow.

2. Differential Files

Where incremental logging kept a file of records that were changed
and instantaneously modified the database, a differential file is a log where
all the updates to the database are deferred until the end of the transaction.
The file also consists of an area along with an area processor for data
manipulation that is separate from the area processors assigned to the
database areas. When a transaction needs to update the database, a copy of
the selected records is transferred into the differential file. All of the updates
are modified in the di‘ferential file and at the end of the transaction all
updated records are merged into the database. In addition, the records in the
differential file are in actuality part of the database, subject to processing by

all queries and therefore require additional bits for marking the records in

17

the differential file. These additional bits identify which is the most recent
version of a record. For example, it the extra bit is 0, then the system knows
that the most recent version of the record still resides in the main database
and therefore the differential file is skipped and the main database is
accessed immediately. To get the most current record, the system searches
the differential file for every record retrieval except in the case where the

extra bit is 0, then the original copy is accessed from the main database.

a. Algorithm Description

Figure 5, depicts the placement of the differential file if it were
placed in MBDS. As each transaction enters the controller, the system logs
the transaction into the differential file. When the transaction completes, the
transaction is sent to the backends to merge into the database.

Specifically, as with incremental logging, when a transaction
enters the system, a "start” record is written to the differential file with the
transaction number attached. During the execution of the transaction, any
write operations are entered into the file. As a minimum, a record consists
of a transaction name, data item name, and new value of the data. When the
transaction partially commits, a "commit" record is written into the file.
After the transaction partially commits, each partially committed record is
written to stable storage in case of a system failure. After the transaction is
completely finished (no more requests), then the actual updating to the

database can take place. Once the transaction has been entered into the

18

TO HOST
COMPUTER

Figure 5.

ONE OR MORE DISK
DRIVES PER BACKEND

BACKEND 1

. CBACKEND 2
DIFFERENTIAL . A

FILE

BACKEND n

BROADCASTING BUS

Ditferential File on MBDS Hardware Organization

19

actual database then it e.nte.rs the committed state. After the transaction
enters the committed state and a checkpoint has been reached, then the entire
transaction is deleted from the differential file.

Where the incremental log had two primary functions, the redo and
undo, the differential file has one function; the redo. Because the system is
not updating the database directly, the only command that needs to be
executed is one that repeats the submission of a transaction to the database
from the differential file. The redo function sets the value of all data items
updated by the transaction to the new values. In order to guarantee correct
behavior even if a failure occurs during the recovery process, the redo
function must be able to execute many times but the net effect must be

equivalent to executing it only once.

b. Advantages

The primary advantage of differential files is that it isolates the
database from physical change by directing all new and modified records
onto a separate and relatively small file of changes. Since the main database
is never changed in the middle of a transaction, the system can quickly
recover from a systern failure or roll-back. In other words, transaction
aborts are easily handled by simply discarding the record copy in the scratch
area. Aghili and Severance [Ref. 4] note that a differential file architecture
offers an approximately 77 percent improvement in recovery speed when

compared to a update in-place algorithm (incremental log). For a precise

20

mathematical analysis of the differential file model see Aghili and Severance

[Ref. 4].

¢. Disadvantages
Since differential files do not update the database directly, its
major disadvantage is that it requires the additional overhead of reading
differential file pages and the extra CPU overhead to process a query. Fora
system that seldom has a need for roll-back, the overhead of a differentis!
file may not be justified.
3. Shadow Paging
As stated earlier, Shadow Paging is an alternative to a log-based
recovery technique. The database is partitioned into a number of fixed-
length pages. The pages are not stored in physical order on the disk.
Instead, the pages are indexed by the use of a page table. The page table has
an entry for each database page stored on disk. The physical order of the
page table depicts the logical order of the data on disk. During a transaction
a page has a current page table and the shadow page table. All updates are
made to the current page table with the shadow page table as the recovery
source in case the transaction fails.
a. Algorithm Description
When the transaction starts, the shadow page table and the current
page table are identical. During the entire duration of the transaction, the

shadow page table is not changed. The current page table, however, is

21

changed when a transaction performs a write operation. All of the input and
output operations use the current page table to locate the database pages on
the disk. During a write ob_eration, if the page required is not in main
memory, then the page is brought into main memory. If this is the first write
performed on this page, then the system must find an unused page on disk
(Inok at fiec page list), deiete ihe unused page from the free page lst,
modify the current page table so that it now points to the new page, and then
copy and modify the old page with the write. When the transaction
commits, the current page table is written to disk (nonvolatile storage) and
then becomes the shadow page table. In the event of a system crash or
transaction abort, the old shadow page still resides on disk and therefore will

restore the system to its last consistent state.

b. Advantages
Shadow paging offers some advantages over log-based systems.
First, shadow paging eliminates the overhead of logging records. And
secondly, according to Korth and Silberschatz [Ref. 18] recovery is

significantly faster with shadow paging then with log-based systems.

¢. Disadvantages
Although, shadow paging has some significant advantages, its
disadvantages eliminate it from further consideration. First, data becomes
extremely fragmented because the pages change location every time they are

updated. This creates a significant change in the physical locality of the

.22

pages. Since we want related pages close to one another on disk, we have
violated the locality principle by requiring the system to travel a great
distance (relatively speaking) to find the related data. Gray [Ref. 3] found
that shadow paging was bad for direct (random) processing and for
sequential processing for the reason stated above. The time savings in
recovery have been negated by the reduction in system performance or a
requirement for even higher-overhead schemes for physical storage
management.

Figure 6 depicts the problem of violating the locality principle.
Note that in the shadow page table, page number 4 has been modified by the
current transaction and the current page table is now pointing at the 6th page
on the disk as compared to the 4th page. Once the transaction commits, the
current page table becomes the shadow page table and the physical
relationship between the pages no longer exists. What exists now is a
logical relationship which reauires more disk access time. This speaks
nothing of the fragmentation that is going on as pages become inaccessible
which is the next problem that is addressed.

The second problem with shadow paging is that after each
transaction commits, the old page is lost and becomes inaccessible (i.e., not
free space and no useable information). This creates a severe garbage
collection problem for the system. Garbage collection will add even more

overhead and complexity to the system. Additionally, in order to use a

23

1 1
2 2
3 3
4 4
5 5
6 6
SHADOW Page Table Pages on Disk CURRENT Page Table

Figure 6. Shadow and Current Page Tables

24

shadow mechanism, the system requires a large amount (20 percent) of disk
space to hold the shadow pages [Ref. 3].

And the last problem with shadow paging is that it is more difficult
than logging algorithms to adapt to a concurrent operating environment (i.e.,
more than one transaction occurring a one time). In order for shadow paging
to be used in a concurrent environment, the system would have to use a log.
The use of a log would negate the advantage of having a shadow paging
system in the first place. Additionally, the level of granularity is restricted to
the size of a page which further hinders its performance in a concurrent
environment. IBM’s first relational system, System R, employed a recovery
manager that used shadow paging. By using shadow paging, they also were
forced into the use of an incremental log. Gray states [Ref. 3, p. 231] that
they were unable to architect a transaction mechanism based solely on
shadows which supported multiple users and in retrospect wished they had
used a log-based recovery system with no shadow paging. He went on to
say that the shadow page table was redundant and became extremely

expensive for large files.

C. SUMMARY AND CONCLUSIONS

In summary, the three general algorithms for implementing roll-back and
recovery were incremental logging, differential files, and shadow paging.
With incremental logging the updating of the database is done immediately
with a log used to recover the system in case of roll-back. With differential

25

files, the database is not 'updated until the transaction has completely
finished and a log of the update has been entered into the file. And finally
with shadow paging, there are two copies of the page table. The page table
that keeps track of the current updates is called the current page table. The
page table that maintains the old version of thc page table is called the
shadow page table. After a transaction has been completed, the current page
table becomes the shadow page table.

A review of the three general algorithms has given a good basis for
deciding on the general algorithm to use in implementing the roll-back and
recovery mechanism for the MBDS system. As discussed in the last section,
the algorithm for shadow paging has been discarded for the primary reason
that it is very difficult to implement in a concurrent transaction environment.
The overhead required to implement shadow paging in a concurrent
operating environment as MBDS would not be cost effective. With that
decision made, we now tumn our attention to the first two algorithms;
incremental logging and differential files.

Before completely turning our attention to the two methods, we must
first review our primary objectives in implementing a roll-back and
recovery mechanism. As stated in Chapter 1, Section A.1, a very powerful
extension of roll-back and recovery would be the ability to insert a
transaction, allow the supervisor to see the results of that transaction, and

then if he/she liked the results, have the transaction committed to the

26

database. If the results were unsatisfactory to the supervisor, then the
supervisor could invoke what we call a supervisor roll-back. The ability of
the supervisor to roll-back would require that a recovery system be prepared
to roll-back numerous times. Therefore we need a recovery mechanism
that maximizes roll-back and recovery speed and at the same time performs
in a manner that does not degrade normal system performance.

In the first general algorithm, incremental logging, we found that the
advantages of incremental logging are two-fold. First, a system that runs
with this method has the fastest processing time of database operations.
Because the database is instantaneously updated with the logging operations,
there is virtually no performance degradation of the system. And Secondly,
the algorithm is straightforward and therefore easy to implement. However,
although incremental logging has the fastest processing time of the three
algorithms, it has one major disadvantage, it is the slowest of the three in
roll-back and recovery. Cardenas [Ref. 5] and Agrawal [Ref. 9] agree that
in cases where there may be many roll-backs or other circumstances that
incremental logging would not be the best selection. They go on to state that
the recovery actions of rollback and restart are performed faster with

differential files or shadow paging (with a log). For a statistical analysis and

comparison of all three cases refer to Cardenas [Ref. 5] and Agrawal [Ref.

9].

27

On the basis of the empirical evidence listed above and the requirements
of the system design, we have selected a modified version of the differential

file approach as our roll-back and recovery mechanism for MBDS.

- 28

II. IMPLEMENTATION ISSUES

A. IMPLEMENTATION CONSIDERATIONS
1. Problem Specification

In developing an algorithm to roll-back and recover MBDS, there are
primarily four concems that must be addressed. First, we want the user to be
able to put in a test transaction and to see the results of those changes.
Since the user could do this many times, we would like to roll-back
efficiently by permanently changing the database only when the user wants
to commit the transaction. Secondly, we want to develop in the algorithm
the ability to commit or uncommit the transaction based on the user’s
desires. Thirdly, we must develop a data structure that retains the current
state of the database but is also able to integrate the new test data into
queries without changing the database. And fourthly, we have to slightly
modify the concurrency control mechanism to maintain a consistent view of

the database.

2. Modifications to the Differential Log
In a traditional differential file algorithm, the system logs every
transaction and then later enters the transaction into the database. Before the
transaction 1is entered into the database, the system treats the log as part of
the database. In concurrent operations, other simultaneous transactions must

be able to reference both the differential file and the physical database.

In the MBDS algorithm, the differential log (Backend Transaction
Log (BTL)) only logs those transactions which start with BEGIN and end
with END. The system responds to any RETRIEVE requests in the
transaction by first querying the database for the information and then goes
to the BTL to make any changes to the RETRIEVE request. The transaction
is not sent from the BTL to the database until the system receives a
COMMIT from the user. If the system receives an UNCOMMIT, then the
transaction is flushed from the BTL and no change to the database is needed.

The reasons for this type of log are straightforward. First, once a test
transaction enters the system, the user only receives the information from the
system by placing RETRIEVE’s in the transaction since all modifications
(UPDATE, INSERT, DELETE) to the database are transparent to the user.
Once all the information from the RETRIEVE’s has been gathered into a
buffer location from the database, all the modifications can be done in the
buffer location based on the transaction in the BTL. Therefore all
modifications are done in the buffer location and not to the database.
Secondly, the concurrency control mechanism does not have to change
except in the case of a TEST. In the case of a TEST, there will be the need
for additional read LOCKSs into the BTL. The reason for the additional locks
would prevent a concurrent process from writing over or deleting a TEST

transaction inadvertently. Thirdly, minimal changes are required to the

system to implement the algorithm. And finally, the system incurs very little

additional overhead with the system upgrade.

3. The Placement and Description of the Log

The two sections that follow describe the two possible locations that
the BTL could be placed. In the centralized version, the BTL is placed at the
controller level and centrally manages the test transactions. In the
decentralized version, a copy of the BTL is placed in each one of the
backends.

In either case, the BTL would abstractly look like the table in Figure
7. Each transaction would be assigned a transaction number. Since each
transaction is made up of a number of requests, a request number is assigned
to each atomic ABDL command. The ABDL command is then put into the
table. The next field is used to state whether the request is a test or not.
Although this field does not seem necessary since the request would not be
in the table if it were not a test, it is a very important part of the data
structure because it tells the system that this is a test request. There will
more on this in Chapter IV. And finally, the last two fields give the status of

the request (i.e., committed or uncommitted), and the user number.

B. THE CENTRALIZED APPROACH

In this section, we present the centralize3 placement of the BTL in the
system controller. The first section describes the user interface to the
system. The second section describes the system algorithm to implement the

3l

TRAN| REQ
ABDL COMMAND TEST lcomm|YSER
|#»
R1|INSERT(<Flle,Census>,<Population,58000»,<City, Siy»), | YES 1
'ro R2 |RETRIEVE (CITY ,Z BOSTON) (CITY), YES "
R3 |UPDATE(File=Census and City=Cumberiand)(....) YES .
R1
T1 R2
R3
aes R4
R1
T
N | R2 |

Figure 7. Backend Transaction Log

centralized approach. And then the last two sections describe the advantages
and disadvantages of this algorithm.
1. The User Interface
The user interface is depicted in Figure 8. In Figure 8 the user would

run his MBDS software and see a set of choices:

1. COMMIT

2. TEST

3. QUIT

4. DATA DICTIONARY
The COMMIT selection would tell the system that roll-back will not be
required and to function in a normal manner (make changes to the database
as necessary). The QUIT selection will exit the user to the operating system.
The DATA DICTIONARY selection would give the user index information
into his database. If the user selects TEST, he will be prompted to enter
BEGIN and then insert the transaction. At the end of the transaction, the
systemn again prompts the user to insert the END into the transaction. The
system then inserts the transaction into the BTL. After the transaction has
been inserted into the BTL, the system searches for any RETRIEVE requests
in the transaction and sends those requests to the backends. The backends
receive the requests and check to see if the requests are for a TEST, if a
request 1s for a TEST, the backend gathers the information from the database

and then requests a read LOCK on the BTL. Once the backend gets access

l USER

| COMMIT, TEST,

COMMIT

o

QUIT OR

DATA ‘DiC

QUIT
I'——'—_" EXIT
DBMq

Ny

DATA
DICTIONARY

*TYPE °'BEGIN™

"INSERT REQUEST'

SEND TRANS TO BACKEND

PERFORM
OPERATION

T

PUT TRANS ON
BUS FROM BTL

DELETE TRANS
IN BTL

COMMIT

!

“"INSERT TRANS"

T

"TYPE 'END'™

v

INSERT IN BTL

t

SEARCH BTL

FOR RETRIEVES

:

PROCESS
RETRIEVES

UNCOMMIT

Figure 8.

34

Centralized BTL User Interface

to the BTL, it modifies the information gatiiered from the database and sends
the results to the controller. The user is then given the information
requested. The user can then COMMIT or UNCOMMIT the transaction. If
the user commits, the transaction (minus the RETRIEVE’s) is to be
processed by the system in the nonnal manner. If the user uncommits, the
transaction is simply flushed from the BTL. In either case, the user is
returned to the initial user interface for further processing. In the following

seciion, the general algorithm is discussed in greater detail.

2. The General Algorithm

Figure 9 depicts the relationship between the hardware and software
in MBDS. The top block is the controller to MBDS. The bottom block is
one backend to the MBDS system, understanding that there could be many
backends to the controller. Additionally, we have placed the BTL in the
controller in this centralized model.

Initially the transaction is received by the controller from the user
(Figure 9,(1)). The Request Preparation Section of the controller formats
the user requests into a table. The user then is given a choice to either
COMMIT, TEST, DATA DICTIONARY, or QUIT. If the user selects
COMMIT, then the transaction is sent directly to the Directory Management
Section of the backends (Figure 9,(2)).

If the user selects TEST, then all the operations are to be logged into

the BTL. The BTL manager will send out the RETRIEVE’s in sequential

35

@A

CONTROLLER @ Jussn INTERFACE
Y
REPLY PRALLY [aEquesT | REQUEST
':::Nl'ron —o] [PARSER| 1coMPOSER PREPARATION
PROCESSING

TEST

COMMIT

ReTRiEVE'S (3) -

@

CLUSTER ID
GENERATOR

INSE

GENERRTOR

RT INFORMATION

GET PCL

BACKEND
SELECTOR

DESCRIPTOR ID
GENERATOR

SENT OUT W/ (T)

PUT PCL

A BACKEND

PUT PCLI@

4 -

DIRECTORY
MANAGEMENT

CLUSTER
SEARCH

ADDRESS
GENERATION

DescmPTOEI

SEARCH <

b

GET PCL

——
¢

|

RECORD
PROCESSING

AGGREGATE
OPERATION

¥y v
PHYSICAL
DATA
OPERATION

!

REQUEST
COMPLETE

NEW
TRANS

CONCURRENCY
CONTROL

LOCK REQ/ SEARCH

Figure 9.

36

Centralized Backend Transaction Log (BTL)

order (Figure 9,(3)). The test RETRIEVE’s will be specially designated in
their fields as TEST queries. The backends will be required to not only
check their databases for the information but to look into the BTL for any
updates/insertions/deletions to the transaction requests. Each backend will
require a read LOCK in order to access the BTL. These LOCKs will be
managed by the BTL manager and requested by the Record Processing
Section of the backends (Figure 9,(4)). The BTL LOCKSs’ will be managed
by the BTL manager and the LOCKs to the database are managed by the
Concurrency Control Section (Figure 9,(5)) of the backends. For more
information on the MBDS concurrency control mechanism refer to [REFS.
14,15]. The read LOCKs in the BTL will only be given to those requests
whose transaction and request number are equal to the those in the BTL.
The updated user request of the test RETRIEVE will be sent directly to Post
Processing (Figure 9,(6)) for dissemination to the user.

The user is then given the choice to COMMIT or UNCOMMIT the
test. If the user commits the transaction, then all requests of the transaction
(except the RETRIEVE’s) are sent to the backends from the BTL for
processing. The entries in the BTL of the transaction are deleted from the
BTL. If the user uncommits, then all requests for a given transaction in the

BTL are deleted.

37

If the user selects DATA DICTIONARY, the user
is given information about his indices into the database. And finally, if the
user chooses QUIT, he will be exited from DBMS to the operating system.

3. Advantages

There are primarily three advantages to using the centralized BTL.
The first reason is that a copy of the BTL is located centrally so there is very
little overhead to the total system. The second reason is that assuming that
the majority of the transactions will commit directly, there is no change to
the current system. And finally, the locking mechanism will only have to
change for "tests" which will occur only a small percentage of the time in

relation to the total users on the system.

4. Disadvantages
The one major disadvantage of this system 1is that this would
significantly increase the traffic over the network. The additional traffic
over the network would cause processing delays and degradation of system
performance. In addition, the major design goal of maximizing the work of
the backends would be violated by requiring the controller the additional

performance overhead of maintaining the BTL.

C. THE DECENTRALIZED APPROACH
In this section, we present the decentralized placement of the BTL in
each one of the backends. The first section describes the user interface to

the system. The second section describes the system algorithm to implement

38

the decentralized approach. And then the last two sections describe the

advantages and disadvantages of this algorithm.
1. The User Interface

The user interface to the decentralized BTL is very similar to the
centralized BTL. The decentralized BTL user interface is depicted in Figure
10. In Figure 10, the user would run his MBDS software and see the

following set of choices:
1. COMMIT
2. TEST
3.QUIT
4. DATA DICTIONARY

As in the centralized approach, the COMMIT selection would tell the system
that roll-back will not be required and to function in a normal manner (make
changes to the database as necessary). The QUIT selection will exit the user
to the operating system. The DATA DICTIONARY selection would give
the user index information into his database. If the user selects TEST, he
will be prompted to enter BEGIN and then insert the transaction. At the end
of the transaction, the system again prompts the user to insert the END into
the transaction. The system then inserts the transaction into the BTL. The
primary difference here between the centralized approach and the
decentralized approach is that instead of making 1 copy of the transaction

and storing it in the controller, the decentralized model broadcasts the

‘ USER

QuIT |
| COMMIT, TEST, EXIT
-~ | QuIT OR'DATA DIC DBM
NNy
COMMIT —
DICTIONARY || “TYPE 'BEGIN
“INSERT REQUEST' ‘
"INSERT TRANS"
A SEND TRANS TO BACKEND 1
PERFORM “TYPE 'END™
<4——| OPERATION £
T INSERT IN
BACKENDS BTL
SEARCH BTL
FOR RETRIEVES
BACKENDS l
COMMIT TRAN
PROCESS
RETRIEVES
DELETE TRAN COMMIT “"COMMIT OR
IN BTL UNCOMMIT"
UNCOMMIT

Figure 10. Decentralized BTL User Interface

40

transaction to all the backends to be entered into the BTL. When the
transaction is received, the backend checks to see if it is a TEST, if it is a
TEST, the backend inserts the transaction into the BTL. After the transaction
has been inserted into the BTL, the local BTL searches for any RETRIEVE
requests in the transaction and immediately accesses the database to gather
information. The backend then requests a local read LOCK on the BTL and
modifies the requested information based on the information in the BTL.
This information is passed on to the controller who compiles the information
from all the backends and sends the requested information to the user. The
user can then COMMIT or UNCOMMIT the transaction. If the user
commits, the transaction (minus the RETRIEVE’s) is sent to be merged into
the database in the normal manner. If the user uncommits, the transaction is
simply flushed from the BTL. In either case, the user is returned to the
initial user interface. In the next section, the general algorithm is discuss2d

in greater detail.

2. The General Algorithm
Figure 11 depicts the relationship between the hardware and software
in MBDS. As describe earlier, the top block is the con:roller to MBDS. The
bottom block is one backend to the MBDS system, understanding that there
could be many backends to the controller. The significant change here is

that now the BTL is located in each backend.

4]

CONTROLLER |user INTERFACE

() Y (1)
g e’
IM?OE::'-I’YOR REQUEST REQUEST

~——| PARSER PREPARATION
POST PERATION COMPOSER
PROCESSING
F
CLUSTER ID| INSERT INFORMATION
GENERATOR GENERATOR
BACKEND DESCRIPTOR ID
SELECTOR GENERATOR
>
GET PCL —&1 PUT PCL
<+
A BACKEND
/5\
o/
PUT PCcLl@— DIRECTORY CLUSTER
7 - MANRGEMENT| SEARCH @
commIT |
ADDRESS DESCRIPTOR
GENERATION| | SEARCH
w/
A SEARCH
RECORD PHYSICAL —/ *@
PROCESSING PHYS! EGUEST New
s
AGGREGATE| |OPERATIO J‘——Kbnoz COMPLETE
OPERATION (s) CONCURRENCY
CONTROL

Figure 11. Decentralized Backend Transaction Log (BTL)
42

Initially, the transaction is received by the controller from the user
(Figure 11,(1)). The Request Preparation Section of the controller formats
the user requests into a table. The user then is given a choice to either to
COMMIT, TEST, DATA DICTIONARY, or QUIT. If the user executes a
COMMIT or a TEST, the transaction is sent directly to the backend. If the
user selects COMMIT, then the transaction is sent directly to the Directory
Management section of the backends (Figure 11,(2)).

If the user selects TEST, then the backend immediately logs the
transaction into the BTL (Figure 11,(3)). The local BTL manager will send
out the RETRIEVE’s in sequential order (Figure 11,(4)). The test
RETRIEVE’s will be specially designated in their record fields as TEST
queries. The backends will be required to not only check their databases for
the information but to look into their local BTL for any
updates/insertions/deletions to the transaction requests. The backend
information, or a negative response (in the case that the backend has no
information in the database relating to the query), is then sent directly to
Post Processing (Figure 11,(5)) for compilation by the controller and
disseminated to the user.

Each backend will require a read LOCK in order to access the BTL
and additional read LOCKs to access the database. The BTL LOCKs will be
managed by the local BTL manager and the LOCKs to the database are

managed by the Concurrency Control Section (Figure 11,(6)). The LOCKs

43

to the database are requeéted by the Directory Management Section of the
backends (Figure 11,(7)) and the LOCKs to the BTL are requested by the
Record Processing Section (Figure 11,(8)). The read LOCKs in the BTL
will only be given to those requests whose transaction and request number
are equal to the those in the BTL. Once a transaction has been processed by
an operation, the LOCKs are then given back to the BTL manager and
Concurrency Control Section.

The user is then given the choice to COMMIT or UNCOMMIT the
TEST. If the user commits the transaction, then all requests of the
transaction (except the RETRIEVE’s) are sent to the Directory Management
Section (Figure 11,(9)) for processing. The entries in the BTL of the
transaction are deleted from the BTL. If the user uncommits, then all
requests for a given transaction in the BTL are deleted.

If the user chooses DATA DICTIONARY, the user is given
information about his indices into the database. And finally, if the user

chooses QUIT, he will be exited from DBMS to the operating system.
3. Advantages

This version of the BTL has some significant advantages. First, since
each backend has its own copy of the transaction log, it is much quicker to
get into the BTL (no requirement to network to the controller in order to
request locks as in the centralized BTL version). This greatly reduces the

traffic on the network increasing system performance. Third, assuming that

44

the majority of the transactions will commit directly, there is no change to
the current system. Fourth, the locking mechanism will only have to change
for tests which will occur only a small percentage of the time. And finally,
one of the major design goals for MBDS was to minimize the work done by
the controller and maximize the work done by the backends [Ref. 15, p. 1].
The use of the decentralized BTL maintains the spirit of the MBDS major
design goal.
4. Disadvantages

The primary disadvantage of this model is that every backend will
have a copy of the BTL. This redundancy will create extra storage
overhead for each backend. If the data structure for the BTL is dynamic,

the overall cost to the system would be negligible.

D. SUMMARY AND CONCLUSIONS

In this chapter, we discussed the four major implementation issues
that concemed the inclusion of roll-back and recoverv in MBDS. The four
issues were:

1) Give the user the ability to put in a test transaction and to see
the results of those changes.

2) Develop in the algorithm the ability to COMMIT or
UNCOMMIT the transaction based on the user’s desires.

3) Develop a data structure that retains the current state of the
database but is also able to integrate the new test data into queries
without changing the database.

4) Modify the concurrency control mechanism.

45

Additionally, the traditional differential file model had to be modified
to fit the four issues listed above and MBDS. In the MBDS algorithm, the
differential log (Backend Transaction Log (BTL)) only logs TEST
transactions. The system responds to any RETRIEVE requests in the
transaction by first querying the database for the information and then goes
to the BTL to make any changes to the results of the RETRIEVE request.
The transaction is not sent from the BTL to the database until the system
receives a COMMIT from the user. If the system receives an UNCOMMIT,
then the transaction is flushed from the BTL and no change to the database
is needed.

There are two places to put the BTL. The first option, the centralized
BTL, called for putting the BTL in the controller. The centralized BTL had
primarily three advantages; little system storage overhead, small change to
the current system, and the concurrency control mechanism would only have
to change for tests. But, the Centralized BTL had two major
disadvantages. First, this method would significantly increase the traffic
over the network due to the need to receive read LOCKs from the BTL.
Second, the major design goal of maximizing the work of the backends
would be violated by requiring the controller the additional performance
overhead of maintaining the BTL.

The second option, the decentralized BTL, called for putting the BTL

in each one of the backends. This version of the BTL has some significant

46

advantages; quicker access to the BTL, less network congestion than in the
centralized BTL, little change to the current system, locking mechanism will
only have to change for tests, and finally, maximizes the work done by the
backends. The primary disadvantage of the decentralized approach is the
replication of the BTL in each one of the backends. This can be overlooked
to some extent if the data structure used for the BTL is dynamic. Once the
transaction is committed or uncommitted, it is flushed from the BTL and the
system recovers the storage overhead.

On the account of the significant advantages of the decentralized BTL
over the centralized BTL, MBDS will use the decentralized BTL log as its

recovery storage structure.

47

IV. THE TRANSACTION LOG

In this chapter, the data structure and algorithm is defined that will be
used to implement roll-back and recovery in MBDS. In the first section, the
data structure is proposed for the BTL. In the second section, the "big
picture” of the algorithm is described from a decomposition point of view.
After looking at the "big picture,” the third section describes the algorithm in

detail. And finally, in the last section I summarize the Chapter.

1. THE DATA STRUCTURE

An abstract view of the data structure that will contain the BTL is
depicted in Figure 12. As shown in the figure, the BTL is basically an array
of pointers that point to a linked list of records. For each index into the
array, there is a unique and distinct transaction number associated with it.
As discussed in Chapter I, every transaction is composed of a number of
requests. Each request is put into a record and then inserted into the linked
list of records. For the remainder of this discussion, requests and records are
synonymous. When the logging of the transaction is finished, the user has a
pointer from a array pointing to a linked list of records/requests.

When the transaction is sent to the backends, the BTL manager looks into
the array of pointers, POINTERARRAY, and searches the array for the first
NIL value. The index into POINTERARRAY is the transaction number and
is placed into the first field of the record, TRANSNUM. The sccond field is

48

POINTERARRAY

49

BTLSIZE
1 2 3
’ n
]
[_._ ABDLCMD
TRANSUM |RECNUM COMMIT ST USERNUM | FWDPTR
1 1 INSERT F K 1A
§ 2 PDATE| F T 1A
REQNUMPBDLCMD | coMMIT | TEST USERNUM
TRANR UM S JoELETE | F T 1A FWDPTR
L—TRANSUM [REGNUM ABDLCMD| COMMIT | TEST USERNUM PWDPTR
2 1 JNSERT F T 2A
ransuM [reanum| ABDLCMD [cOMMIT | TEST USERNUM oTR
" 2 |RETRIEVE| F T 2A FWD
ABDLCMD | COMMIT | TEST USERNUM
TRANSUM |REQRUMY \ SERT F T 2A FWDPTR
Figure 12. Backend Transaction Log Data Structure

the request number, REQNUM, which is the sequential order of the requests
as they enter the BTL. The third field is the ABDL command, ABDLCMD,
along with the arguments that follow the command. The fourth field is a
boolean field, COMMIT, that sets the request to TRUE if the request is to be
committed and to FALSE if the request is in an uncommitted state. When
the transaction is first entered into the log, this field is set to FALSE. The
fifth field is another boolean field, TEST, that tells the system that this is a
TEST request. The sixth field, USERNUM, is the user’s system
identification. And finally, the last field, FWDPTR, is the pointer to the next
request in the transaction’s linked list or to NIL if it is the last request in the
transaction.

Since this data structure is dynamic, there is very little overhead incurred
on the backend. The only additional overhead to the backends in non-testing
operations is the array of pointers which requires negligible storage space.
During testing operations, the size of the BTL will be directly dependent on

the number of users that are sending in test transactions.

2. ADECOMPOSITION VIEW OF THE AJ.GORITHM

In Figure 13, the decomposition view of the algorithm is depictec. This
algorithm 1s composed of 14 steps/procedures which are executed
sequentially for each transaction once the system roll-back is invoked.
When the user enters the system, he is presented with four choices D for
data dictionary information, T for test (roll-back), C for commit the

50

@ | o
TS e

T C
CREATE_PTR_ARRA

<D
2 3
EARCH_FOR_PTRARRA @ EARCH_BTL

@ DIRECTORY_MANAGEMEN
EARCH_BTL2 UPDATE_RETRIEV

2
POST_PROCESSING
DELETE_FROM_BTL ADD_TO_DATABAS

Figure 13. A Decomposition Diagram

51

transaction, or Q for quit and return to the operating system. In cases D, C,
and Q, the system performs its operations in the usual manner [Refs. 14,15].
In the case where the user selects T, the roll-back and recovery mechanism is
started.

Once the first user selects the test mode, the first step calls for an array of
pointers to be created in each one of the backends
(CREATE_PTR_ARRAY). This is the initial creation of the BTL. In the
next step, TEST calls SEARCH_FOR_PTRARRAY in order to find the first
pointer in the array that has a NIL pointer. This is the place where the
transaction is to be inserted. In the third and fourth steps, TEST calls
INITIALIZE which calls INSERT_TRANS in order to create the record
structure which inserts the request into the record, attaches the record to the
pointer of the array, and then looks for the next request to insert into the data
structure or BTL. This loop goes on until the entire transaction is entered
into the BTL.

In the next step, the algorithm searches, SEARCH_BTL, the BTL for any
retrieves and sends those retrieves to DIRECTORY_MANAGEMENT.
DIRECTORY_MANAGEMENT searches the database for the information
and sends the information to UPDATE_RETRIEVE if the request was a test.
UPDATE_RETRIEVE searches the BTL a second time to modify the
information and then passes the information onto POST_PROCESSING for

dissemination to the user. If the user elects to COMMIT the changes then

52

—

POST_PROCESSING sends a COMMIT message to
ADD_TO_DATABASE. ADD_TO_DATABASE simply searches through
the BTL for updates, inserts, or deletes and changes the TEST field from
TRUE to FALSE and passes them to DIRECTORY_MANAGEMENT to be
added to the database. If the user selects to UNCOMMIT or after a
transaction has been added to the database, the transaction is deleted from
the database by DELETE_FROM_BTL. In the following section, the

algorithm goes into greater detail.

3. THE ALGORITHM

In the Appendix, this algorithm is written in pseudo PASCAL for further
reference. As discussed in section 1, the data structure of the BTL is an
array of pointers where each pointer points to a linked list of records. The
index into the array is the transaction and the linked list of records are the

requests that compose the transaction.

In section 2, I described the initial user interface to the algorithm with the
selection to COMMIT, TEST, DATA_DICTIONARY, or QUIT. The
present MBDS system remains the same for every user entry except for
TEST. When the TEST option has been selected, the algorithm searches the
array of pointers for a NIL pointer. SEARCH_FOR_PTRARRAY is the
pseudo code algorithm for searching the array for the NIL pointer (see
Appendix). Figure 14 displays an abstract view of the BTL during
SEARCH_FOR_PTRARRAY. In this example, the system currently has

53

k\

>
INSERT
INSERT .
[RETRIEVE
UPDATE
INSERT
DELETE
Figure 14, SEARCH_FOR_PTRARRAY

54

two test transactions active at indices 1 and 2. This procedure simply goes
down the array until it finds that index 3 has a NIL pointer. This is where
the next transaction will go. As indices 1 and 2 are completed, ihe
transactions will be flushed from the BTL and their pointer’s will return to
NIL.

Having found a location in the BTL to insert the transaction,
SEARCH_FOR_PTRARRAY sends the index of the array back to TEST.
TEST sends the index of the array to INITIALIZE. INITIALIZE creates a
record structure of the first request and then sends the request to
INSERT_TRANS where the request is attached to the pointer array. This
loop is continued until all of the transaction has been inserted into the BTL.
Figure 15 displays the loop as the transaction is inserted into the BTL. In
the case of index 3, the first request inserted is an UPDATE. After the
UPDATE, the algorithm gets the next request (RETRIEVE) and inserts it
into the linked list. The initialization phase is completed after the last two
UPDATES are inserted.

Figure 16 depicts the next stage of the algorithm. In Figure 16, the top of
the figure abstractly portrays the software in the backend. At the bottom of
the figure is the BTL data structure as it changes during the procedure
SEARCH_BTL. In order for the system to respond to TEST information
from the user, it must be given the RETRIEVEs from the BTL. In this phase

of the algorithm, a temporary pointer goes through the transaction, in this

55

INITIALIZE

RECORD
3 TRANSNUM
1 JREQNUM
UPDATE |ABDLCMD
FALSE commiT
TRUE TEST
1A JUSERNUM
--- FwopPTR

THE BACK-END TRANSACTION LOG (BTL)

X

INSERT TRANS
2 3 n
K UPDATE S
INSERT \
-
INSERT
_.F ETRIEVE |
ETRIEVE
UPDATE UPDATE
INSERT
DELETE UPDATE

Figure 15. The BTL Initialization

56

— BACKEND —

PUT PCL DIRECTORY CLUSTER
MANRGEMENT | SEARCH
COMMIT
ADDRESS DESCRIPTOR EARYEND
GENERATION | | SEARCH TRANSACTION
—75 (M LOG
7N LOCK/SEARCH]N
RECORD //, —n :
PROCESSING ;:;i‘c“‘ REQUEST Trl‘:EAvli‘lFlC
AGGREGATE] |OPERATION _p| | COMPLETE| | ynit |
OPERATION — CONCURRENCY
CONTROL

EARCH BTL

1 2 3 n

| S— !

[UPDATE —
'

RETRIEVE
UPDATE

| UPDATE

=

Figure 16. Sending RETRIEVEs to Directory Management

57

case transaction 3, and finds the retrieve request and sends it over to
Directory_Management. The temporary pointer continues through the
transaction until all retrieves have been sent to Directory_Management.
DIRECTORY_MANAGEMENT first checks to see if the RETRIEVE is
a TEST RETRIEVE. If the RETRIEVE is not a TEST then
DIRECTORY_MANAGEMENT processes the transaction in the normal
manner [Ref. 14,15]. But if the RETRIEVE is a TEST then
DIRECTORY_MANAGEMENT takes the following actions. First,
DIRECTORY_MANAGEMENT sends a request for type-C (dynamic)
attributes needed by the RETRIEVE command to the Concurrency Control
Section (CC). Once the attributes are locked, CC signals
DIRECTORY_MANAGEMENT. DIRECTORY_MANAGEMENT next
performs a descriptor search and signals CC to release the locks on the
attributes. Following the descriptor search, DIRECTORY_MANAGEMENT
sends the descriptor-ID groups to CC. When the descriptor-ID groups are
locked and the cluster search is allowed, CC signals
DIRECTORY_MANAGEMENT. DIRECTORY_MANAGEMENT then
performs a cluster search and signals CC to release the locks on the
descriptor-ID groups. Following the cluster search, DIRECTORY_
MANAGEMENT sends the cluster-IDs for retrieval to CC. Once the
cluster-IDs are locked and the request can proceed with address generation

and the rest of the request execution, then CC signals

58

DIRECTORY_MANAGEMENT. DIRECTORY_MANAGEMENT then
performs the address generation and sends the RETRIEVE_REQUEST and
the addresses to the Record Processing Section (RP). Once the
RE’I'RIEVE_REQUES"I“ has been generated, the Record Processing Section
(RP) first checks to ensure that the request is a TEST, if the request is a
TEST then RP requests a read LOCK on the BTL. When the LOCK is
granted, Directory_Management calls update_retrieve.

As depicted in the bottom of Figure 17, UPDATE_RETRIEVE creates a
second temporary pointer and looks through the transaction in the BTL for
any inserts, updates, or deletes. When inserts, updates, or deletes are found,
the retrieve_request is modified. The modified retrieve_request is then sent
to Post_Processing Section of the controller where the transaction is
aggregated from all the backends and displayed to the user.

The user is then given the option to COMMIT or UNCOMMIT the
transaction. If the user selects COMMIT then ADD_TO_DATABASE is
called. ADD_TO_DATABASE creates a third pointer into the transaction,
Figure 18, that sends updates, inserts, and deletes to Directory_Management.
Before the requests are sent to DIRECTORY_MANAGEMENT, the TEST
field in the record is changed to false so that
DIRECTORY_MANAGEMENT treats the request as a normal request and
enters the request into database. Once this function is performed, then RP

informs CC that the request is done and the locks on the cluster ids can be

59

BACKEND

PUT PCL DIRECTORY CLUSTER
MANAGEMENT | SEARCH |
COMMIT
' ADDRESS DESCRIPTOR
TRIEVE KEND
GENERATION| | SEARCH TRANSACTIO
W/ (T) oG
/
RECORD /
PROCESSING PHYSICAL NEW
DATA REQUEST TRAFFIC
OPERATION ‘ CONCURRENCY
CONTROL

MODIFIED REQUEST

<>

RETRIEVE_REQUEST

UPDATE RETRIEVE

UPDATE

TEMPPTR2

n
v

£

RETRIEVE

TEMPPTR

UPDATE

UPDATE

-

Figure 17.

60

d

Update the RETRIEVE_REQUEST

BACKEND

GET PCL I

PUT PCL | DIRECTORY CLUSTER
MANRGEMENT SEARCH
COMMIT EST
RIEVE* BACKEND+

ADDRESS DESCRIPTOR
GENERATION SEARCH TRANSACTI
LOG

| T / \Lsms&ua.e@

PHYSICAL
PROCESSING DATA REQUEST NEW
AGGREGATE| [OPERATION| l¢—pf |COMPLETE | | THRIF'C
OPERATION CONCURRENCY
LONTRO]

ADD TO DATABASE

1 2 3 n
\L / (TEMPPTR3) |——
UPDATE —
TEMPPTR
RETRIEVE
UPDATE
UPDATE

v

Figure 18. Transaction Inserted into the Database
61

released. Additionally, the BTL manager releases locks on the BTL
request, the transaction is ﬂqshed from the BTL, and then the transaction
pointer returns to NIL.

If the user selects to UNCOMMIT the transaction, RP again notifies CC
to release all locks on the transaction. Additionally, the transaction in the

BTL is flushed from the BTL and the transaction pointer returns to NIL.

4. SUMMARY

In this Chapter, I discussed the data structure of the BTL. The data
structure of the BTL is an array of pointers where each pointer points to a
transaction. The transaction is stored as a linked list of records where each
record is a request. Following a discussion of the data structure, we looked
at the algorithm from a decomposition point of view. This gave us a "big
picture” view of how the algorithm would work. And then finally, we went
into the algorithm itself.

The BTL algorithm has many advantages. First, the UNCOMMIT is
simple to execute because all that needs to be done is to flush the transaction
from the BTL. Second, the COMMIT is done rapidly since all that is
required is to send the transaction from the BTL to
DIRECTORY_MANAGEMENT as if the transaction had originated from
the controller in the first place. Third, since no modification is made to the
database until the user commits, roll-back is done quickly and efficiently.
Fourth. since each user has its own test segregated in the BTL and there is

62

]

no change to the database, each user is partitioned to the effects of his test
only. Fifth, the BTL has a dynamic data structure so there is negligible
overhead when no one is in the TEST mode and expands as users enter the
TEST mode. And finally, there is no change to the current system software
except when the user selects the TEST option. The disadvantages are the
extra overhead required when a TEST option has been selected and the
intuitive observation that a test RETRIEVE will take longer to execute than

a non-test RETRIEVE.

63

V. CONCLUSIONS

In Chapter I, I stated that we wanted to design a roll-back and recovery
algorithm that took into account nine key factors. The first key factor
required that we should develop an algorithm that incurred modest storage
overhead for the duplicated data that is brought into main memory. In this
algorithm, we accomplished this task by requiring our data structure to only
hold data that has not been processed into the database and is therefore not
replicated data. So in actuality we have exceeded the goal of modest storage

overhead.

The second key factor required that the data structure which stores the
data holds only the data it needs and dynamically grow and shrink to fit the
system needs. This is exactly how the data structure for the BTL is designed

and implemented in the algorithm.

The third key factor required that the roll-back and recovery mechanism
is designed with the consideration of storage overhead versus the number
of rollbacks required. A system that seldom has a need to roll-back should
have a different algorithm ther a system that frequently rolls-back. Our
system had a un.que problem. In the direct COMMIT mode, the system
would not roll-back and therefore not require any storage overhead. But in
th= TEST mode, the system may expect to roll-back many times. This has

mandated the requirement not to change the database until the user

64

committed the transaction. In order to solve this problem in the most
efficient manner, we designed a dynamic data structure for the BTL so that
in cases when there were no TEST operations ongoing, there was little
storage overhead to the system. On the other hand, we created a differential
log when in the TEST mode so that we could quickly and efficiently roll-
back numerous times.

The fourth key factor required that our design permits parallelism to the
maximum extent possible to satisfy system performance requirements. A
system could always guarantee a consistent view of the database and fast
recovery if it serially executed each transaction. But the costs of serial
execution negate any performance benefit of a concurrent system.
Aditionally, the level of granularity must be to the level that offers
maximum concurrency. In order to maintain the concurrency and
parallelism of the system, the concurrency control only had to be slightly
modified in the TEST mode. The only difference in the TEST mode is that
the Record Processing Section (RP) must hold onto its cluster id locks a
little longer until it can get an additional lock on the BTL and modify the

RETRIEVE REQUEST.

The fifth key factor required that the algorithm performs satisfactorily in
a network environment. Incorporating the TEST mode into the system
would naturally increase the load to the network because of the increased
interaction between the user and the database. However, implementing a

65

table approach as opposéd to modifying the database would appear the least

costly of the two alternatives.

The sixth key factor required that the overhead during normal
performance should not be increased by the roll-back and recovery
mechanism. Since normal performance does not require interface with the
BTL, there is no degradation of system performance caused by the roll-back

and recovery mechanism.

The seventh key factor required that the recovery speed during roll-back
should not cause major delays to the users. Since roll-back only requires
flushing the transaction from the BTL and does not require any modification

to the database, the roll-back will not create any major delays to the users.

The eighth key factor required that the software complexity of the
recovery mechanism needs to be as simple as possible to prevent system
delays. Implementing the BTL as an array of pointers pointing to a linked
list of records intuitively fits the structure of multiple transactions. The
complexity for flushing the BTL requires only the setting of the pointer to

the transaction to NIL.

And finally, the recovery system must be reliable. Having not modified

the database before a roll-back is initiated allows for a very reliable roll-back

66

mechanism. Since the state of the database is only updated during

COMMIT operations, the database is never in an inconsistent state.

The BTL algorithm meets »or exceeds all of the critical factors required of
a roll-back and recovery mechanism. It will give MBDS yet another

necessary capability.

67

APPENDIX

THE BACK-END TRANSACTION LOG(BTL) ALGORITHM

program ROLL-BACK (ouput,input);

(***********************#************************************)

(* This is an algorithm for implementing a roll-back *)
(* operation that will allow TEST queries with data to be *)
(* entered into the database. Users then will have *)
(* the ability to commit the changes or uncommit them. *)

(**)

(* DATA STRUCTURE and DECLARATIONS *)

const
STRINGSIZE = 45;
BTLSIZE = 25;

type
LINKPOINTER = ABTL;
INDEX = 1..BTLSIZE;
POINTERARRAY = array [INDEX] of LINKPOINTER;
STRING = packed array [1..STRINGSIZE] of CHAR;
BTL = record
TRANSUM : integer;
REQNUM : integer;
ABDLCMD : string;
COMMIT : boolean;
TEST :boolean;
USERNUM : integer;
FWDPTR : linkpointer;
end; (* BTL *)

var
USERREPLY : char;
TRANSACTION_NUM : integer;
USER_NUMBER :integer;
PTRARRAY : pointerarray;

68

(******************t*#***************************************)
(********************** DELETE FROM BTI_' ***************)
(*******************************;}*****:@********************)
procedure DELETE_FROM_BTL (PTRARRAY(.NUM.) : linkpointer);
(***************************************#********************)
(* This procedure deletes the transaction from the BTL *)
%k

(* and returns the pointer to the system.
(**)

begin
PTRARRAY(.NUM.) := nil;
end; (* DELETE_FROM_BTL ¥)

69

——

(R ook ook ook ok ok ok ok ok K Rk kK)
(k¥widrkdkkkkkiokkkkkkkkk ADD TO_DATABASE *¥*kk sk kknk)
(********************************51**************************)

procedure ADD_TO_DATABASE (PTRARRAY(.NUM.) : linkpointer);

(**)

(* This procedure accesses the transaction in the BTL *)
(* and sends all UPDATEs, INSERTs OR DELETE:s to *)
(* DIRECTORY_MANAGEMENT for input into the database. *)
(* The "TEST" field is changed to false to tell *)
(* DIRECTORY_MANAGEMENT that this request is not a test *)
(**)
var
TEMPPTR3 : linkpointer;
begin

new (TEMPPTR3),
TEMPPTR3 := PTRARRAY(NUM.);
while TEMPPTR3.FWDPTR <> nil do begin
read (TEMPPTR3.ABDLCMD);
if TEMPPTR3.ABDLCMD = "UPDATE, INSERT OR
DELETE" then begin
TEMPPTR3.TEST := false;
DIRECTORY_MANAGEMENT(PTRARRAY(.NUM.),
TEMPPTR3);

end (* if *)
TEMPPTR3 = TEMPPTR3.FWDPTR;

end; (* while *)

read (TEMPPTR3.ABDLCMD);

if TEMPPTR3.ABDLCMD = "UPDATE, INSERT OR DELETE"

then begin
TEMPPTR3.TEST := false;
DIRECTORY_MANAGEMENT(PTRARRAY(NUM.), TEMP
PTR3);
end (* if *)
end; (* ADD_TO_DATABASE ¥*)

70

(********************#***************************************)
(********************** CONTROLLER *********************)
(****************************#*******************************)
(*********************** POST_PROCESSING ****************)
(**)

procedure POST_PROCESSING (RETRIEVE_REQUEST : undefined,
PTRARRAY(.NUM.,) : linkpointer);

(**)

(* This procedure aggregates all the RETRIEVE_REQUEST(S) *)
(* from the back-ends and then asks the user if *)
(* he/she wants to commit the changes or uncommit them. If the user *)
(* wants to commit the changes then the changes are *)
(* added to the data base (ADD_TO_DATABASE) and *)
(* then deleted from the BTL(DELETE_FROM_BTL). If *)
(* the user wants to uncommit the changes *)

(* then the changes are deleted from the BTL(DELETE_FROM_BTL). *)

(**)

var
ANSWER : char;

begin
PP aggregates RETRIEVE_REQUEST (S) from back-ends;
displayed to user;
writeln ("COMMIT OR UNCOMMIT, C OR U?");
readln (ANSWER);
if ANSWER = "C" then begin
ADD_TO_DATABASE (PTRARRAY(NUM.));
DELETE_FROM_BTL (PTRARRAY(NUM.));
end (* if *)
else
DELETE_FROM_BTL (PTRARRAY(NUM.));
end; (* POST_PROCESSING *)

(*#*****************’i‘*i**************************************)

(**************************** SEARCH BTL2 ***********#*****)
(***********************ﬁ***********#i&**********************)

procedure SEARCH_BTL?2 (var TEMPPTR : linkpoiuter,
var FOUND : boolean);

(**)

(* This procedure is called by UPDATE_RETRIEVE to see *)
(* if the request is an INSERT, UPDATE OR DELETE *)
(* which will be used to update the RETRIEVE_REQUEST. *)
(**)
begin

read (TEMPTR.ABDLCMD);

if TEMPPTR.ABDLCMD = "INSERT,UPDATE OR DELETE" then

FOUND := true;
end; (* SEARCH_BTL2 *)

(**)
(*********************** UPDATE RETRIEVE ***************)
(********************************;}**************************)

procedure UPDATT._RETRIEVE (PTRARRAY(.NUM.) : linkpointer,
RETRIEVE_REQUEST : undefined);

(*************** -lt**)

(* This procedure updates the RETRIEVE_REQUEST by *)
(* going through the transaction with another *)
(* pointer and checking for INSERTs,UPDATEs OR DELETEs. *)
(* If one is found, then the RETRIEVE_REQUEST is *)
(* modified by record processing. *)

(**)

var
TEMPPTR? : linkpointer;
FOUND : boolean;

begin
new (TEMPPTR2);
TEMPPTR2 := PTRARRAY(NUM.);
repeat

FOUND := false;
SEARCH_BTL2(TEMPPTR2,FOUND);
if FOUND then begin
RP compares TEMPPTR2.ABDLCOM to
RETRIEVE_REQUEST;
RP modifies RETRIEVE_REQUEST;
TEMPPTR?2 := TEMPPTR2.FWDPTR;
end; (* if *)
until TEMPPTR2.FWDPTR = nil
FOUND := false;
SEARCH_BTL2(TEMPPTR2, FOUND);
RP compares TEMPPTR2.ABDLCOM to RETRIEVE_REQUEST;
RP modifies RETRIEVE_REQUEST:
POST_PROCESSING (RETRIEVE_REQUEST,
PTRARRAY(.NUM.));
end; (* UPDATE_RETRIEVE *)

73

(FRFF Rk ok kR ok ok oolokkokok ko Sk ok kR kKKK)

(*********************** DIREC’TORY MANAGEMENT **********)
(**)
procedure DIRECTORY_MANAGEMENT(PTRARRAY(.NUM.)
linkpointer,
TEMPPTR : linkpointer);

(**)

(* This procedure takes in any ABDL request and *)
(* processes the query. If the query is a test query *5
(* then it has to request an additional lock for the BTL. *)
(* It also calls UPDATE_RETRIEVE to recompute *)

(* the RETRIEVE_REQUEST which will eventually be shown to the user.*)

(**)

var
DM (* DIRECTORY MANAGEMENT *) : string;
CC (* CONCURRENCY CONTROL *) : string;
RP (* RECORD PROCESSING *) : string;
BTL (* BACK-END TRANSACTION LOG *) : string;
PP (* POST PROCESSING *) :string;
begin

DM sends type-C attributes needed from TEMPPTR to CC
- when attributes locked then
+ CC signals DM;

DM performs descriptor search
- signals CC to release locks on those attributes;

DM sends the descriptor-ID groups for retrieve request to CC
- when descriptor-ID groups locked and cluste. search allowed

then
+ CC signals DM,;

DM performs cluster search and signals CC to release the locks on the
descriptor-ID groups;

DM sends the cluster-IDs for the retrieval to CC.
- once cluster-IDs are locked
+ address generation
+ if TEMPPTR.ABDLCMD = RETRIEVE OR
RETRIEVE-COMMON then
+ begin
-request processed
-RETRIEVE_REQUEST formed
+end (* if *)

- CC signals DM;

if TEMPPTR.TEST = true then begin
RP requests lock on BTL to CC
when lock is approved
UPDATE_RETRIEVE (PTRARRAY(NUM.),
RETRIEVE_REQUEST);
RP returns locks on cluster-ids to CC
RP retumns locks on BTL
end; (* if *)
end; (* DIRECTORY_MANAGEMENT ¥*)

75

(****#***##********)
(************************#*** SEARCH BTL ****************#*)
(************************************i@**********************)
procedure SEARCH_BTL (PTRARRAY (.NUM.) : linkpointer),
(**#***********)
(* This procedure searches the transaction for retrieves *)
(* and sends the retrieve to DIRECTORY MANAGEMENT for *)
*

(* processing.
(**)

var
TEMPPTR : linkpointer;

begin
TEMPPTR := PTRARRAY(NUM.);
while TEMPPTR.FWDPTR <> nil do begin
read (TEMPTR.ABDLCMD);
if TEMPPTR.ABDLCMD = "RETRIEVE" then
DIRECTORY_MANAGEMENT(PTRARRAY(.NUM.),
TEMPPTR);
TEMPPTR = TEMPPTR.FWDPTR;
end; (* while *)
if TEMPPTR.ABDLCMD = "RETRIEVE" then
DIRECTORY_MANAGEMENT(PTRARRAY(NUM.),
TEMPPTR);
end; (* SEARCH_BTL *)

76

(***************************_*********************************)

(**************************** INSERT TRANS ****************)
(***********************************i&***********************)

procedure INSERT_TRANS (var PTRARRAY(.NUM.) : linkpointer,

BTL : record);
(**)

(* This procedure takes the record (request) from *)
(* INITIALIZE and joins it to the rest of the transaction *)
(* in the BTL. *
(***k**************)
var

TEMPPTR : linkpointer;
begin

new(TEMPPTR);

if PTRARRAY(.NUM.) = nil then begin
PTRARRAY(.NUM.) = BTL;
PTRARRAY(NUM.).FWDPTR =nil;

end
else begin
TEMPPTR = PTRARRAY(.NUM.);
while TEMPPTR.FWDPTR <> nil do
TEMPPTR = TEMPPTR.FWDPTR,;
TEMPPTR.FWDPTR = BTL;
BTL.FWD = nil;
end;

end; (* INSERT_TRANS *)

77

**)
(**************************** MALIZE ********************)
(***********************ﬁ************************************)

procedure INITIALIZE (var PTRARRAY(.NUM.) : linkpointer);

(************************#***********************************)

(* This procedure inserts the complete transaction into *)
(* the data structure (BTL). It takes one request at *)
(* a time, puts the request into a record, and then *)
(* sends the record to INSERT_TRANS which artaches *)
(* the record to the transaction in the BTL. *)
(**)
var

ENTERREQUEST : boolean;

ANSWER : char;

REQUESTNUM : integer;

USER_NUM : integer;
begin

writeln ("ENTER YOUR USER NUMBER");

readln (USER_NUM);

REQUESTNUM :=0;

BTL.TRANSUM :=NUM;

ENTERREQUEST := true;

writeln ("TYPE 'BEGIN’");

while ENTERREQUEST = true do begin
REQUESTNUM := REQUESTNUM + 1;
writeln ("ENTER YOUR REQUEST");
readln (RTL.ABDLCMD);
BTL.REQNUM = REQUESTNUM;
BTL.PARTIALCOM = true;
BTL.COMMIT = false;
BTL.TEST = true;
BTL.USERNUM = USER_NUM,;
INSERT_TRANS (PTRARRAY(.NUM.),BTL);
WRITELN ("FINISHED ENTERING REQUESTS? Y OR N");
READLN (ANSWER);
if ANSWER = "N’ then

ENTERREQUEST = true
else
ENTERREQUEST = false
end; (* while ENTERREQUEST *)
writeln ("TYPE 'END’");
end; (* INITIALIZE *)

78

(**)

(******************* SEARCH_FOR_PT’RARRAY ***************)

(**)

procedure SEARCH_FOR_PTRARRAY (var PTRARRAY(NUM.) :

ointer);
(**)
(* This procedure searches a global array of pointers *)
. (* for an empty pointer to insert the transaction into *)
%*

(* the Back-end Transaction Log.
(**)

var
MAXLENGTH, COUNT : index;
STOPLOOP : boolean;

begin
STOPLOOP := false;
for COUNT = 1 to MAXLENGTH do begin
if STOPLOOP := false then begin
if PTRARRAY(.NUM.).FWDLINK = nil then begin
STOPLOOQORP := true;

end; (* if *)
NUM :=NUM + 1;
end; (* if *)

end; (* for *)
NUM :=NUM - 1;
end; (* SEARCH_FOR_PTRARRAY %)

76

Aok kR ok kR ok kR ok ok ok ok ook ok ok ok o ko)
(Frrrd kR kb Rk kkkkok kT | § T dk ko kokkkkkokk ok kkkok ko k)
dokak ko ok ok koo ook ok sk R ok ks ook sk ok ok oo o o ko)

procedure TEST; '

(**)
(* This procedure is the "junction” of this algorithm. *)
(* It calls SEARCH_FOR_PTRARRAY to find a slot in the BTL. *)
(* It then calls INITIALIZE to insert the *)
(* transaction into the BTL. And then calls SEARCH_BTL *)
(* to run the transaction. *)

(************************************#***********************)

var
NUM : index;

begin
NUM :=1;
SEARCH_FOR_PTRARRAY(PTRARRAY(.NUM.));
INITIALIZE (PTRARRAY(.NUM.));
SEARCH_BTL (PTRARRAY(NUM.));

end;(* TEST *)

(**)

(********************* CREATE—PTR_ARRAY *****************)

(**)

procedure CREATE_PTR_ARRAY;

(**)

(* This procedure creates the array that stores the BTL. *)
(**)

var
I, STOP = index;

begin
forI =1 to STOP do begin
PTRARRAY(.L.) = nil;
end; (* for *)
end; (* CREATE_PTR_ARRAY *)

80

(**)
(***#*************************** M A I N *********************)
(**)
begin
writeln ("Type C for commit, T for test, D for data dictionary");
writeln ("or Type Q for quit");
CREATE_PTR_ARRAY;
readln (USERREPLY);
while USERREPLY in [.C,c,T,t,D,d.] do begin
case USERREPLY of
C,c : COMMIT_PROCEDURE;
T,t: TEST;
D,d : DATA_DICTIONARY_PROCEDURE,;
end (* while case *)
writeln ("Type C for commit, T for test, D for data”);
writeln ("dictionary");
writeln ("or Type Q for quit");
readln (USERREPLY);
end; (* while USERREPLY *)

end. (* ROLL-BACK *)

81

LIST O¥ REFERENCES

Bayer, R., Heller, H., and Reiser, A., "Parallelism and Recovery in
Database Systems,” ACM Transactions on Database Systems, V. 5, pp.
139-156, June 1980.

Kohler, W., "A Survey of Techniques for Synchronization and
Recovery in Decentralized Computer Systems," ACM Transactions on
Database Systems, v. 13, pp. 149-179, June 1981.

Gray, J., and others, "The Recovery Manager of the System R
Database Manager," ACM Transactions on Database Systems, v. 13,
Pp. 223-242, June 1981.

Aghili, H., and Severance, D., "A Practical Guide to the Design of
Differential Files for Recovery of On-Line Databases,” ACM
Transactions on Database Systems, v. 7, pp. 540-565, December
1982.

Cardenas, A., Alavian, F., and Avizienis, A., "Performance of
Recovery Architectures in Parallel Associative Database Processor,"
ACM Transactions on Database Systems, v. 8, pp. 291-323,
September 1983.

Hecht, M., and Gabbe, J., "Shadowed Management of Free Disk
Pages with a Linked List,” ACM Transactions on Database Systems,
v. 8, pp. 503-514, December 1983.

Reuter, A., "Performance Analysis of Recovery Techniques," ACM
Transactions on Database Systems, v. 9, pp. 526-559, December
1984.

Bemstein, P., and Goodman, N., "An Algorithm for Concurrency
Control and Recovery in Replicated Distributed Databases," ACM

Transactions on Database Systems, v. 9, pp. 596-615, December
1984.

Agrawal, R., and Dewitt, D., "Integrated Concurrency Control and
Recovery Mechanisms: Design and Performance Evaluation,” ACM
Transactions on Database Systems, v. 10, pp. 529-564, December
1985.

10.

11.

12.

13.

14.

15.

16.

17.

I8.

IBM Research Division, Report RJ 6649, ARIES : A Transaction
Recovery Method Supporting Fine-Granularity Locking and Partial
Rollbacks Using Write-Ahead Logging, by C. Mohan and others, pp.
1-45, 23 January 1989.

IBM Research Division, Report RJ 6650, ARIES/NT: A Recovery
Method Based on Write-Ahead Logging for Nested Transactions, by
K. Rothermel and C. Mohan, pp. 1-22, 23 January 1989.

The Ohio State University, Columbus, Ohio, Report OSU-CISRC-
TR-81-7, "Design and Analysis of a Multi-Backend Database System
for Performance Improvement, Functionality Expansion, and
Capacity Growth (Part 1), by D K. Hsiao and M.J. Menon, August
1981.

The Ohio State University, Columbus, Ohio, Report OSU-CISRC-
TR-81-8, "Design and Analysis of a Multi-Backend Database System
for Performance Improvement, Functionality Expansion, and Capacity
Growth (Part 2), by D.K. Hsiao and M.J. Menon, August 1981.

Naval Postgraduate School, Report NPS52-83-003, "The
Implementation of a Multi-Backend Database System (MDBS). Part
Il - The Message-Oriented Version With Concurrency Control and
Secondary-Memory-Based Directory Management,” by Hsiao, D.K.,
Boyne, R.D., and Demurjian, S.A_, pp. 1-89, March 1983.

Naval Postgraduate School, Report NPS52-84-005, "The
Implementation of a Multi-Backend Database System (MDBS): Part
IV - The Revised Concurrency Control and Directory Management
Processes and the Revised Definitions of Inter-process and Inter-
computer Messages,” by Hsiao, D.K., Kerr, D.S., and Demurjian,
S.A., pp. 1-121, February 1984.

Hsiao, D.K., and Demurjian, S.A., "Towards a Better Understanding
of Data Models Through the Multilingual Database System," IEEE
Transactions on Software Engineering, v. 14, pp. 946-958, July 1988.

Rodeck, B.D., Accessing and Updating Functional Databases Using
Codasyl-DML, Master’s Thesis, Naval Postgraduate School,
Monterey, California, June 1986.

Korth, H.F., Silberschatz, A., Database System Concepts, McGraw-
Hill, 1986.

83

BIBLIOGRAPHY

Benson, T.P., and Wentz, G.L., The Design and Implementation of a
Hierarchical Interface for the Multi-Lingual Database System, M..S.
Thesis, Naval Postgraduate School, Monterey, California, June 1985.

Bemstein, P.A., Hadzilacos, V., and Goodman, N., Concurrency Control
and Recovery in Database Systems, Addison-Wesley, 1987.

Hsiao, D.K., Modern Database System Architectures, (Unpublished
Manuscript), March 1989.

Hsiao, D.K., Coker, H., and Demurjian, S.A., The Multi-Model Database
System, Naval Postgraduate School, Report NPS52-87-026 June
1987.

Hsiao, D.K., and Kamel, M.N., Heterogeneous Databases: Proliferations,
Issues and Solutions, IEEE Transactions on Knowledge and Data
Engineering, KDE 1, 1 (June 1989).

Hsiao, D.K., Pitargue, M., and Wong, A., Reliable Broadcasting for Parallel
Database Backend Computers, Naval Postgraduate School, Report
NPS52-89-001, November 1988.

Zawis, J.A., Accessing Hierarchical Databases via SQL Transactions in a

Multi-Model Database System, M.S. Thesis, Naval Postgraduate
School, Monterey, California, December 1987.

84

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5100

Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

Curriculum Officer, Code 37
Computer Technology

Naval Postgraduate School
Monterey, California 93943-5100

Professor David K. Hsiao, Code 52
Computer Science Department
Naval Postgraduate Schooi
Monterey, California 93943-5100

CPT David E. Quantock
883 Jefferson Dr.
Greenville, MS 38701

Marciano Pitargue, Code 52
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

Debbie Gaiser, Code 52
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

Tom Chu, Code 52

Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

85

No. Copies
2

10.

11.

12.

13.

14.

Steven A. Demurjian, Code 52
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

Timothy P. Benson
P.O. Box 1974
Woodbridge, Virginia 22193

Gary L. Wentz
111 Appian Way
Pasadena, Maryland 21122

Gary R. Kloepping
Route 1, Box 99
Santa Rosa, Texas 78593

John F. Mack

2934 Emory Street
Columbus, Georgia 31903

86

